(en.wikipedia.org) Curry–Howard correspondence - Wikipedia

ROAM_REFS: https://en.wikipedia.org/wiki/Curry–Howard_correspondence

In programming language theory and proof theory, the Curry–Howard correspondence is the direct relationship between computer programs and mathematical proofs. It is also known as the Curry–Howard isomorphism or equivalence, or the proofs-as-programs and propositions- or formulae-as-types interpretation.

It is a generalization of a syntactic analogy between systems of formal logic and computational calculi that was first discovered by the American mathematician Haskell Curry and the logician William Alvin Howard. It is the link between logic and computation that is usually attributed to Curry and Howard, although the idea is related to the operational interpretation of intuitionistic logic given in various formulations by L. E. J. Brouwer, Arend Heyting and Andrey Kolmogorov (see Brouwer–Heyting–Kolmogorov interpretation) and Stephen Kleene (see Realizability). The relationship has been extended to include category theory as the three-way Curry–Howard–Lambek correspondence.

Local Graph

org-roam 5edf24bc-eeaa-465f-b90f-8565edbb600b (en.wikipedia.org) Curry–Howard corre... //en.wikipedia.org/wiki/Programming_language_theory https://en.wikipedia.org/wiki/Programming_language_theory 5edf24bc-eeaa-465f-b90f-8565edbb600b->//en.wikipedia.org/wiki/Programming_language_theory //en.wikipedia.org/wiki/Proof_theory https://en.wikipedia.org/wiki/Proof_theory 5edf24bc-eeaa-465f-b90f-8565edbb600b->//en.wikipedia.org/wiki/Proof_theory //en.wikipedia.org/wiki/Computer_program https://en.wikipedia.org/wiki/Computer_program 5edf24bc-eeaa-465f-b90f-8565edbb600b->//en.wikipedia.org/wiki/Computer_program //en.wikipedia.org/wiki/Mathematical_proof https://en.wikipedia.org/wiki/Mathematical_proof 5edf24bc-eeaa-465f-b90f-8565edbb600b->//en.wikipedia.org/wiki/Mathematical_proof //en.wikipedia.org/wiki/Analogy https://en.wikipedia.org/wiki/Analogy 5edf24bc-eeaa-465f-b90f-8565edbb600b->//en.wikipedia.org/wiki/Analogy //en.wikipedia.org/wiki/Mathematician https://en.wikipedia.org/wiki/Mathematician 5edf24bc-eeaa-465f-b90f-8565edbb600b->//en.wikipedia.org/wiki/Mathematician //en.wikipedia.org/wiki/Haskell_Curry https://en.wikipedia.org/wiki/Haskell_Curry 5edf24bc-eeaa-465f-b90f-8565edbb600b->//en.wikipedia.org/wiki/Haskell_Curry //en.wikipedia.org/wiki/Logician https://en.wikipedia.org/wiki/Logician 5edf24bc-eeaa-465f-b90f-8565edbb600b->//en.wikipedia.org/wiki/Logician //en.wikipedia.org/wiki/William_Alvin_Howard https://en.wikipedia.org/wiki/William_Alvin_Howard 5edf24bc-eeaa-465f-b90f-8565edbb600b->//en.wikipedia.org/wiki/William_Alvin_Howard //en.wikipedia.org/wiki/Intuitionistic_logic https://en.wikipedia.org/wiki/Intuitionistic_logic 5edf24bc-eeaa-465f-b90f-8565edbb600b->//en.wikipedia.org/wiki/Intuitionistic_logic //en.wikipedia.org/wiki/L._E._J._Brouwer https://en.wikipedia.org/wiki/L._E._J._Brouwer 5edf24bc-eeaa-465f-b90f-8565edbb600b->//en.wikipedia.org/wiki/L._E._J._Brouwer //en.wikipedia.org/wiki/Arend_Heyting https://en.wikipedia.org/wiki/Arend_Heyting 5edf24bc-eeaa-465f-b90f-8565edbb600b->//en.wikipedia.org/wiki/Arend_Heyting //en.wikipedia.org/wiki/Andrey_Kolmogorov https://en.wikipedia.org/wiki/Andrey_Kolmogorov 5edf24bc-eeaa-465f-b90f-8565edbb600b->//en.wikipedia.org/wiki/Andrey_Kolmogorov //en.wikipedia.org/wiki/Brouwer–Heyting–Kolmogorov_interpretation https://en.wikipedia.org/wiki/Brouwer–Heyting–Kolmogorov_interpretation 5edf24bc-eeaa-465f-b90f-8565edbb600b->//en.wikipedia.org/wiki/Brouwer–Heyting–Kolmogorov_interpretation //en.wikipedia.org/wiki/Stephen_Kleene https://en.wikipedia.org/wiki/Stephen_Kleene 5edf24bc-eeaa-465f-b90f-8565edbb600b->//en.wikipedia.org/wiki/Stephen_Kleene //en.wikipedia.org/wiki/Realizability https://en.wikipedia.org/wiki/Realizability 5edf24bc-eeaa-465f-b90f-8565edbb600b->//en.wikipedia.org/wiki/Realizability //en.wikipedia.org/wiki/Category_theory https://en.wikipedia.org/wiki/Category_theory 5edf24bc-eeaa-465f-b90f-8565edbb600b->//en.wikipedia.org/wiki/Category_theory 3bdab7d2-9dfa-477a-851b-7e8e52aa51b5 Session Zero, [2025-02-23 Sun 15:00-1... 3bdab7d2-9dfa-477a-851b-7e8e52aa51b5->5edf24bc-eeaa-465f-b90f-8565edbb600b 2a07e4ea-610b-4c9a-bb84-d961fb2450e5 Code and Coffee Book Club 2a07e4ea-610b-4c9a-bb84-d961fb2450e5->5edf24bc-eeaa-465f-b90f-8565edbb600b