(en.wikipedia.org) Extended real number line - Wikipedia

ROAM_REFS: https://en.wikipedia.org/wiki/Extended_real_number_line

In mathematics, the extended real number system is obtained from the real number system \(\mathbb{R}\) by adding two elements denoted \(+ \infty\) and \(- \infty\) that are respectively greater and lower than every real number. This allows for treating the potential infinities of infinitely increasing sequences and infinitely decreasing series as actual infinities. For example, the infinite sequence \((1,2,\ldots)\) of the natural numbers increases infinitively and has no upper bound in the real number system (a potential infinity); in the extended real number line, the sequence has \(+ \infty\) as its least upper bound and as its limit (an actual infinity). In calculus and mathematical analysis, the use of \(+ \infty\) and \(- \infty\) as actual limits extends significantly the possible computations. It is the Dedekind–MacNeille completion of the real numbers.

The extended real number system is denoted \(\overset{¯}{\mathbb{R}}\), \(\lbrack - \infty, + \infty\rbrack\), or \(\mathbb{R} \cup \left\{ {- \infty, + \infty} \right\}\). When the meaning is clear from context, the symbol \(+ \infty\) is often written simply as \(\infty\).

There is also a distinct projectively extended real line where \(+ \infty\) and \(- \infty\) are not distinguished, i.e., there is a single actual infinity for both infinitely increasing sequences and infinitely decreasing sequences that is denoted as just \(\infty\) or as \(\pm \infty\).

Local Graph

org-roam 74d776a5-c205-4d13-8648-10457d2067fc (en.wikipedia.org) Extended real numb... //en.wikipedia.org/wiki/Mathematics https://en.wikipedia.org/wiki/Mathematics 74d776a5-c205-4d13-8648-10457d2067fc->//en.wikipedia.org/wiki/Mathematics //en.wikipedia.org/wiki/Real_number https://en.wikipedia.org/wiki/Real_number 74d776a5-c205-4d13-8648-10457d2067fc->//en.wikipedia.org/wiki/Real_number //en.wikipedia.org/wiki/Potential_infinity https://en.wikipedia.org/wiki/Potential_infinity 74d776a5-c205-4d13-8648-10457d2067fc->//en.wikipedia.org/wiki/Potential_infinity //en.wikipedia.org/wiki/Actual_infinity https://en.wikipedia.org/wiki/Actual_infinity 74d776a5-c205-4d13-8648-10457d2067fc->//en.wikipedia.org/wiki/Actual_infinity //en.wikipedia.org/wiki/Infinite_sequence https://en.wikipedia.org/wiki/Infinite_sequence 74d776a5-c205-4d13-8648-10457d2067fc->//en.wikipedia.org/wiki/Infinite_sequence //en.wikipedia.org/wiki/Natural_number https://en.wikipedia.org/wiki/Natural_number 74d776a5-c205-4d13-8648-10457d2067fc->//en.wikipedia.org/wiki/Natural_number //en.wikipedia.org/wiki/Upper_bound https://en.wikipedia.org/wiki/Upper_bound 74d776a5-c205-4d13-8648-10457d2067fc->//en.wikipedia.org/wiki/Upper_bound //en.wikipedia.org/wiki/Least_upper_bound https://en.wikipedia.org/wiki/Least_upper_bound 74d776a5-c205-4d13-8648-10457d2067fc->//en.wikipedia.org/wiki/Least_upper_bound //en.wikipedia.org/wiki/Limit_(mathematics) https://en.wikipedia.org/wiki/Limit_(mathematics) 74d776a5-c205-4d13-8648-10457d2067fc->//en.wikipedia.org/wiki/Limit_(mathematics) //en.wikipedia.org/wiki/Calculus https://en.wikipedia.org/wiki/Calculus 74d776a5-c205-4d13-8648-10457d2067fc->//en.wikipedia.org/wiki/Calculus //en.wikipedia.org/wiki/Mathematical_analysis https://en.wikipedia.org/wiki/Mathematical_analysis 74d776a5-c205-4d13-8648-10457d2067fc->//en.wikipedia.org/wiki/Mathematical_analysis //en.wikipedia.org/wiki/Dedekind–MacNeille_completion https://en.wikipedia.org/wiki/Dedekind–MacNeille_completion 74d776a5-c205-4d13-8648-10457d2067fc->//en.wikipedia.org/wiki/Dedekind–MacNeille_completion //en.wikipedia.org/wiki/Projectively_extended_real_line https://en.wikipedia.org/wiki/Projectively_extended_real_line 74d776a5-c205-4d13-8648-10457d2067fc->//en.wikipedia.org/wiki/Projectively_extended_real_line