(en.wikipedia.org) Lie algebra - Wikipedia

ROAM_REFS: https://en.wikipedia.org/wiki/Lie_algebra

In mathematics, a Lie algebra (pronounced liː LEE) is a vector space \(\mathfrak{g}\) together with an operation called the Lie bracket, an alternating bilinear map \(\mathfrak{g} \times \mathfrak{g}\rightarrow\mathfrak{g}\), that satisfies the Jacobi identity. In other words, a Lie algebra is an algebra over a field for which the multiplication operation (called the Lie bracket) is alternating and satisfies the Jacobi identity. The Lie bracket of two vectors \(x\) and \(y\) is denoted \(\lbrack x,y\rbrack\). A Lie algebra is typically a non-associative algebra. However, every associative algebra gives rise to a Lie algebra, consisting of the same vector space with the commutator Lie bracket, \(\lbrack x,y\rbrack = xy - yx\).

Lie algebras are closely related to Lie groups, which are groups that are also smooth manifolds: every Lie group gives rise to a Lie algebra, which is the tangent space at the identity. (In this case, the Lie bracket measures the failure of commutativity for the Lie group.) Conversely, to any finite-dimensional Lie algebra over the real or complex numbers, there is a corresponding connected Lie group, unique up to covering spaces (Lie's third theorem). This correspondence allows one to study the structure and classification of Lie groups in terms of Lie algebras, which are simpler objects of linear algebra.

In more detail: for any Lie group, the multiplication operation near the identity element 1 is commutative to first order. In other words, every Lie group G is (to first order) approximately a real vector space, namely the tangent space \(\mathfrak{g}\) to G at the identity. To second order, the group operation may be non-commutative, and the second-order terms describing the non-commutativity of G near the identity give \(\mathfrak{g}\) the structure of a Lie algebra. It is a remarkable fact that these second-order terms (the Lie algebra) completely determine the group structure of G near the identity. They even determine G globally, up to covering spaces.

In physics, Lie groups appear as symmetry groups of physical systems, and their Lie algebras (tangent vectors near the identity) may be thought of as infinitesimal symmetry motions. Thus Lie algebras and their representations are used extensively in physics, notably in quantum mechanics and particle physics.

An elementary example (not directly coming from an associative algebra) is the 3-dimensional space \(\mathfrak{g} = \mathbb{R}^{3}\) with Lie bracket defined by the cross product \(\lbrack x,y\rbrack = x \times y.\) This is skew-symmetric since \(x \times y = - y \times x\), and instead of associativity it satisfies the Jacobi identity:

\(x \times (y \times z) + y \times (z \times x) + z \times (x \times y) = 0.\)

This is the Lie algebra of the Lie group of rotations of space, and each vector \(v \in \mathbb{R}^{3}\) may be pictured as an infinitesimal rotation around the axis \(v\), with angular speed equal to the magnitude of \(v\). The Lie bracket is a measure of the non-commutativity between two rotations. Since a rotation commutes with itself, one has the alternating property \(\lbrack x,x\rbrack = x \times x = 0\).

Local Graph

org-roam 82c9cfe8-eb0d-4340-8592-373c3581c0dd (en.wikipedia.org) Lie algebra - Wiki... //en.wikipedia.org/wiki/Mathematics https://en.wikipedia.org/wiki/Mathematics 82c9cfe8-eb0d-4340-8592-373c3581c0dd->//en.wikipedia.org/wiki/Mathematics //en.wikipedia.org/wiki/Help:IPA/English https://en.wikipedia.org/wiki/Help:IPA/English 82c9cfe8-eb0d-4340-8592-373c3581c0dd->//en.wikipedia.org/wiki/Help:IPA/English //en.wikipedia.org/wiki/Help:Pronunciation_respelling_key https://en.wikipedia.org/wiki/Help:Pronunciation_respelling_key 82c9cfe8-eb0d-4340-8592-373c3581c0dd->//en.wikipedia.org/wiki/Help:Pronunciation_respelling_key //en.wikipedia.org/wiki/Vector_space https://en.wikipedia.org/wiki/Vector_space 82c9cfe8-eb0d-4340-8592-373c3581c0dd->//en.wikipedia.org/wiki/Vector_space //en.wikipedia.org/wiki/Alternating_multilinear_map https://en.wikipedia.org/wiki/Alternating_multilinear_map 82c9cfe8-eb0d-4340-8592-373c3581c0dd->//en.wikipedia.org/wiki/Alternating_multilinear_map //en.wikipedia.org/wiki/Jacobi_identity https://en.wikipedia.org/wiki/Jacobi_identity 82c9cfe8-eb0d-4340-8592-373c3581c0dd->//en.wikipedia.org/wiki/Jacobi_identity //en.wikipedia.org/wiki/Algebra_over_a_field https://en.wikipedia.org/wiki/Algebra_over_a_field 82c9cfe8-eb0d-4340-8592-373c3581c0dd->//en.wikipedia.org/wiki/Algebra_over_a_field //en.wikipedia.org/wiki/Non-associative_algebra https://en.wikipedia.org/wiki/Non-associative_algebra 82c9cfe8-eb0d-4340-8592-373c3581c0dd->//en.wikipedia.org/wiki/Non-associative_algebra //en.wikipedia.org/wiki/Associative_algebra https://en.wikipedia.org/wiki/Associative_algebra 82c9cfe8-eb0d-4340-8592-373c3581c0dd->//en.wikipedia.org/wiki/Associative_algebra //en.wikipedia.org/wiki/Commutator https://en.wikipedia.org/wiki/Commutator 82c9cfe8-eb0d-4340-8592-373c3581c0dd->//en.wikipedia.org/wiki/Commutator //en.wikipedia.org/wiki/Lie_group https://en.wikipedia.org/wiki/Lie_group 82c9cfe8-eb0d-4340-8592-373c3581c0dd->//en.wikipedia.org/wiki/Lie_group //en.wikipedia.org/wiki/Group_(mathematics) https://en.wikipedia.org/wiki/Group_(mathematics) 82c9cfe8-eb0d-4340-8592-373c3581c0dd->//en.wikipedia.org/wiki/Group_(mathematics) //en.wikipedia.org/wiki/Smooth_manifolds https://en.wikipedia.org/wiki/Smooth_manifolds 82c9cfe8-eb0d-4340-8592-373c3581c0dd->//en.wikipedia.org/wiki/Smooth_manifolds //en.wikipedia.org/wiki/Tangent_space https://en.wikipedia.org/wiki/Tangent_space 82c9cfe8-eb0d-4340-8592-373c3581c0dd->//en.wikipedia.org/wiki/Tangent_space //en.wikipedia.org/wiki/Commutativity https://en.wikipedia.org/wiki/Commutativity 82c9cfe8-eb0d-4340-8592-373c3581c0dd->//en.wikipedia.org/wiki/Commutativity //en.wikipedia.org/wiki/Real_number https://en.wikipedia.org/wiki/Real_number 82c9cfe8-eb0d-4340-8592-373c3581c0dd->//en.wikipedia.org/wiki/Real_number //en.wikipedia.org/wiki/Complex_number https://en.wikipedia.org/wiki/Complex_number 82c9cfe8-eb0d-4340-8592-373c3581c0dd->//en.wikipedia.org/wiki/Complex_number //en.wikipedia.org/wiki/Connected_space https://en.wikipedia.org/wiki/Connected_space 82c9cfe8-eb0d-4340-8592-373c3581c0dd->//en.wikipedia.org/wiki/Connected_space //en.wikipedia.org/wiki/Covering_space https://en.wikipedia.org/wiki/Covering_space 82c9cfe8-eb0d-4340-8592-373c3581c0dd->//en.wikipedia.org/wiki/Covering_space //en.wikipedia.org/wiki/Lie's_third_theorem //en.wikipedia.org/wiki/Lie's_third_theorem 82c9cfe8-eb0d-4340-8592-373c3581c0dd->//en.wikipedia.org/wiki/Lie's_third_theorem //en.wikipedia.org/wiki/Lie_group–Lie_algebra_correspondence https://en.wikipedia.org/wiki/Lie_group–Lie_algebra_correspondence 82c9cfe8-eb0d-4340-8592-373c3581c0dd->//en.wikipedia.org/wiki/Lie_group–Lie_algebra_correspondence //en.wikipedia.org/wiki/List_of_simple_Lie_groups https://en.wikipedia.org/wiki/List_of_simple_Lie_groups 82c9cfe8-eb0d-4340-8592-373c3581c0dd->//en.wikipedia.org/wiki/List_of_simple_Lie_groups //en.wikipedia.org/wiki/Quantum_mechanics https://en.wikipedia.org/wiki/Quantum_mechanics 82c9cfe8-eb0d-4340-8592-373c3581c0dd->//en.wikipedia.org/wiki/Quantum_mechanics //en.wikipedia.org/wiki/Cross_product https://en.wikipedia.org/wiki/Cross_product 82c9cfe8-eb0d-4340-8592-373c3581c0dd->//en.wikipedia.org/wiki/Cross_product //en.wikipedia.org/wiki/3D_rotation_group https://en.wikipedia.org/wiki/3D_rotation_group 82c9cfe8-eb0d-4340-8592-373c3581c0dd->//en.wikipedia.org/wiki/3D_rotation_group //en.wikipedia.org/wiki/Lie's_third_theorem https://en.wikipedia.org/wiki/Lie's_third_theorem 2a07e4ea-610b-4c9a-bb84-d961fb2450e5 Code and Coffee Book Club 2a07e4ea-610b-4c9a-bb84-d961fb2450e5->82c9cfe8-eb0d-4340-8592-373c3581c0dd