(en.wikipedia.org) Numerical tower - Wikipedia

ROAM_REFS: https://en.wikipedia.org/wiki/Numerical_tower

In Scheme, the numerical tower is a set of data types that represent numbers and a logic for their hierarchical organisation.

Each type in the tower conceptually "sits on" a more fundamental type, so an integer is a rational number and a number, but the converse is not necessarily true, i.e. not every number is an integer. This asymmetry implies that a language can safely allow implicit coercions of numerical types—without creating semantic problems—in only one direction: coercing an integer to a rational loses no information and will never influence the value returned by a function, but to coerce most reals to an integer would alter any relevant computation (e.g., the real 1/3 does not equal any integer) and is thus impermissible.

Local Graph

org-roam 3d496345-f0c5-4f04-bb7e-ed7af607d571 (en.wikipedia.org) Numerical tower - ... //en.wikipedia.org/wiki/Scheme_(programming_language) https://en.wikipedia.org/wiki/Scheme_(programming_language) 3d496345-f0c5-4f04-bb7e-ed7af607d571->//en.wikipedia.org/wiki/Scheme_(programming_language) //en.wikipedia.org/wiki/Data_types https://en.wikipedia.org/wiki/Data_types 3d496345-f0c5-4f04-bb7e-ed7af607d571->//en.wikipedia.org/wiki/Data_types //en.wikipedia.org/wiki/Number https://en.wikipedia.org/wiki/Number 3d496345-f0c5-4f04-bb7e-ed7af607d571->//en.wikipedia.org/wiki/Number //en.wikipedia.org/wiki/Integer https://en.wikipedia.org/wiki/Integer 3d496345-f0c5-4f04-bb7e-ed7af607d571->//en.wikipedia.org/wiki/Integer //en.wikipedia.org/wiki/Rational_number https://en.wikipedia.org/wiki/Rational_number 3d496345-f0c5-4f04-bb7e-ed7af607d571->//en.wikipedia.org/wiki/Rational_number //en.wikipedia.org/wiki/Type_conversion https://en.wikipedia.org/wiki/Type_conversion 3d496345-f0c5-4f04-bb7e-ed7af607d571->//en.wikipedia.org/wiki/Type_conversion 2a07e4ea-610b-4c9a-bb84-d961fb2450e5 Code and Coffee Book Club 2a07e4ea-610b-4c9a-bb84-d961fb2450e5->3d496345-f0c5-4f04-bb7e-ed7af607d571