(en.wikipedia.org) Quaternion - Wikipedia

ROAM_REFS: https://en.wikipedia.org/wiki/Quaternion

In mathematics, the quaternion number system extends the complex numbers. Quaternions were first described by the Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. The algebra of quaternions is often denoted by H (for Hamilton), or in blackboard bold by \(\mathbb{H}.\) Quaternions are not a field, because multiplication of quaternions is not, in general, commutative. Quaternions provide a definition of the quotient of two vectors in a three-dimensional space. Quaternions are generally represented in the form

\[a + b\,\mathbf{i} + c\,\mathbf{j} + d\,\mathbf{k},\]

where the coefficients a, b, c, d are real numbers, and 1, i, j, k are the basis vectors or basis elements.

Quaternions are used in pure mathematics, but also have practical uses in applied mathematics, particularly for calculations involving three-dimensional rotations, such as in three-dimensional computer graphics, computer vision, robotics, magnetic resonance imaging and crystallographic texture analysis. They can be used alongside other methods of rotation, such as Euler angles and rotation matrices, or as an alternative to them, depending on the application.

In modern terms, quaternions form a four-dimensional associative normed division algebra over the real numbers, and therefore a ring, also a division ring and a domain. It is a special case of a Clifford algebra, classified as \({Cl}_{0,2}(\mathbb{R}) \cong {Cl}_{3,0}^{+}(\mathbb{R}).\) It was the first noncommutative division algebra to be discovered.

According to the Frobenius theorem, the algebra \(\mathbb{H}\) is one of only two finite-dimensional division rings containing a proper subring isomorphic to the real numbers; the other being the complex numbers. These rings are also Euclidean Hurwitz algebras, of which the quaternions are the largest associative algebra (and hence the largest ring). Further extending the quaternions yields the non-associative octonions, which is the last normed division algebra over the real numbers. The next extension gives the sedenions, which have zero divisors and so cannot be a normed division algebra.

The unit quaternions give a group structure on the 3-sphere S3 isomorphic to the groups Spin(3) and SU(2), i.e. the universal cover group of SO(3). The positive and negative basis vectors form the eight-element quaternion group.

Local Graph

org-roam 9f49f590-90a1-4cca-9da0-d5bf922c2d3f (en.wikipedia.org) Quaternion - Wikip... //en.wikipedia.org/wiki/Mathematics https://en.wikipedia.org/wiki/Mathematics 9f49f590-90a1-4cca-9da0-d5bf922c2d3f->//en.wikipedia.org/wiki/Mathematics //en.wikipedia.org/wiki/Number_system https://en.wikipedia.org/wiki/Number_system 9f49f590-90a1-4cca-9da0-d5bf922c2d3f->//en.wikipedia.org/wiki/Number_system //en.wikipedia.org/wiki/Complex_number https://en.wikipedia.org/wiki/Complex_number 9f49f590-90a1-4cca-9da0-d5bf922c2d3f->//en.wikipedia.org/wiki/Complex_number //en.wikipedia.org/wiki/William_Rowan_Hamilton https://en.wikipedia.org/wiki/William_Rowan_Hamilton 9f49f590-90a1-4cca-9da0-d5bf922c2d3f->//en.wikipedia.org/wiki/William_Rowan_Hamilton //en.wikipedia.org/wiki/Mechanics https://en.wikipedia.org/wiki/Mechanics 9f49f590-90a1-4cca-9da0-d5bf922c2d3f->//en.wikipedia.org/wiki/Mechanics //en.wikipedia.org/wiki/Three-dimensional_space https://en.wikipedia.org/wiki/Three-dimensional_space 9f49f590-90a1-4cca-9da0-d5bf922c2d3f->//en.wikipedia.org/wiki/Three-dimensional_space //en.wikipedia.org/wiki/Blackboard_bold https://en.wikipedia.org/wiki/Blackboard_bold 9f49f590-90a1-4cca-9da0-d5bf922c2d3f->//en.wikipedia.org/wiki/Blackboard_bold //en.wikipedia.org/wiki/Field_(mathematics) https://en.wikipedia.org/wiki/Field_(mathematics) 9f49f590-90a1-4cca-9da0-d5bf922c2d3f->//en.wikipedia.org/wiki/Field_(mathematics) //en.wikipedia.org/wiki/Commutative https://en.wikipedia.org/wiki/Commutative 9f49f590-90a1-4cca-9da0-d5bf922c2d3f->//en.wikipedia.org/wiki/Commutative //en.wikipedia.org/wiki/Vector_(mathematics_and_physics) https://en.wikipedia.org/wiki/Vector_(mathematics_and_physics) 9f49f590-90a1-4cca-9da0-d5bf922c2d3f->//en.wikipedia.org/wiki/Vector_(mathematics_and_physics) //en.wikipedia.org/wiki/Real_number https://en.wikipedia.org/wiki/Real_number 9f49f590-90a1-4cca-9da0-d5bf922c2d3f->//en.wikipedia.org/wiki/Real_number //en.wikipedia.org/wiki/Pure_mathematics https://en.wikipedia.org/wiki/Pure_mathematics 9f49f590-90a1-4cca-9da0-d5bf922c2d3f->//en.wikipedia.org/wiki/Pure_mathematics //en.wikipedia.org/wiki/Applied_mathematics https://en.wikipedia.org/wiki/Applied_mathematics 9f49f590-90a1-4cca-9da0-d5bf922c2d3f->//en.wikipedia.org/wiki/Applied_mathematics //en.wikipedia.org/wiki/Quaternions_and_spatial_rotation https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation 9f49f590-90a1-4cca-9da0-d5bf922c2d3f->//en.wikipedia.org/wiki/Quaternions_and_spatial_rotation //en.wikipedia.org/wiki/3D_computer_graphics https://en.wikipedia.org/wiki/3D_computer_graphics 9f49f590-90a1-4cca-9da0-d5bf922c2d3f->//en.wikipedia.org/wiki/3D_computer_graphics //en.wikipedia.org/wiki/Computer_vision https://en.wikipedia.org/wiki/Computer_vision 9f49f590-90a1-4cca-9da0-d5bf922c2d3f->//en.wikipedia.org/wiki/Computer_vision //en.wikipedia.org/wiki/Magnetic_resonance_imaging https://en.wikipedia.org/wiki/Magnetic_resonance_imaging 9f49f590-90a1-4cca-9da0-d5bf922c2d3f->//en.wikipedia.org/wiki/Magnetic_resonance_imaging //en.wikipedia.org/wiki/Texture_(crystalline) https://en.wikipedia.org/wiki/Texture_(crystalline) 9f49f590-90a1-4cca-9da0-d5bf922c2d3f->//en.wikipedia.org/wiki/Texture_(crystalline) //en.wikipedia.org/wiki/Euler_angles https://en.wikipedia.org/wiki/Euler_angles 9f49f590-90a1-4cca-9da0-d5bf922c2d3f->//en.wikipedia.org/wiki/Euler_angles //en.wikipedia.org/wiki/Rotation_matrix https://en.wikipedia.org/wiki/Rotation_matrix 9f49f590-90a1-4cca-9da0-d5bf922c2d3f->//en.wikipedia.org/wiki/Rotation_matrix //en.wikipedia.org/wiki/Associative_algebra https://en.wikipedia.org/wiki/Associative_algebra 9f49f590-90a1-4cca-9da0-d5bf922c2d3f->//en.wikipedia.org/wiki/Associative_algebra //en.wikipedia.org/wiki/Composition_algebra https://en.wikipedia.org/wiki/Composition_algebra 9f49f590-90a1-4cca-9da0-d5bf922c2d3f->//en.wikipedia.org/wiki/Composition_algebra //en.wikipedia.org/wiki/Division_algebra https://en.wikipedia.org/wiki/Division_algebra 9f49f590-90a1-4cca-9da0-d5bf922c2d3f->//en.wikipedia.org/wiki/Division_algebra //en.wikipedia.org/wiki/Division_ring https://en.wikipedia.org/wiki/Division_ring 9f49f590-90a1-4cca-9da0-d5bf922c2d3f->//en.wikipedia.org/wiki/Division_ring //en.wikipedia.org/wiki/Domain_(ring_theory) https://en.wikipedia.org/wiki/Domain_(ring_theory) 9f49f590-90a1-4cca-9da0-d5bf922c2d3f->//en.wikipedia.org/wiki/Domain_(ring_theory) //en.wikipedia.org/wiki/Clifford_algebra https://en.wikipedia.org/wiki/Clifford_algebra 9f49f590-90a1-4cca-9da0-d5bf922c2d3f->//en.wikipedia.org/wiki/Clifford_algebra //en.wikipedia.org/wiki/Classification_of_Clifford_algebras https://en.wikipedia.org/wiki/Classification_of_Clifford_algebras 9f49f590-90a1-4cca-9da0-d5bf922c2d3f->//en.wikipedia.org/wiki/Classification_of_Clifford_algebras //en.wikipedia.org/wiki/Frobenius_theorem_(real_division_algebras) https://en.wikipedia.org/wiki/Frobenius_theorem_(real_division_algebras) 9f49f590-90a1-4cca-9da0-d5bf922c2d3f->//en.wikipedia.org/wiki/Frobenius_theorem_(real_division_algebras) //en.wikipedia.org/wiki/Subring https://en.wikipedia.org/wiki/Subring 9f49f590-90a1-4cca-9da0-d5bf922c2d3f->//en.wikipedia.org/wiki/Subring //en.wikipedia.org/wiki/Isomorphism https://en.wikipedia.org/wiki/Isomorphism 9f49f590-90a1-4cca-9da0-d5bf922c2d3f->//en.wikipedia.org/wiki/Isomorphism //en.wikipedia.org/wiki/Hurwitz's_theorem_(composition_algebras) //en.wikipedia.org/wiki/Hurwitz's_theorem_(composition_algebras) 9f49f590-90a1-4cca-9da0-d5bf922c2d3f->//en.wikipedia.org/wiki/Hurwitz's_theorem_(composition_algebras) //en.wikipedia.org/wiki/Non-associative_algebra https://en.wikipedia.org/wiki/Non-associative_algebra 9f49f590-90a1-4cca-9da0-d5bf922c2d3f->//en.wikipedia.org/wiki/Non-associative_algebra //en.wikipedia.org/wiki/Octonion https://en.wikipedia.org/wiki/Octonion 9f49f590-90a1-4cca-9da0-d5bf922c2d3f->//en.wikipedia.org/wiki/Octonion //en.wikipedia.org/wiki/Normed_division_algebra https://en.wikipedia.org/wiki/Normed_division_algebra 9f49f590-90a1-4cca-9da0-d5bf922c2d3f->//en.wikipedia.org/wiki/Normed_division_algebra //en.wikipedia.org/wiki/Sedenions https://en.wikipedia.org/wiki/Sedenions 9f49f590-90a1-4cca-9da0-d5bf922c2d3f->//en.wikipedia.org/wiki/Sedenions //en.wikipedia.org/wiki/Zero_divisor https://en.wikipedia.org/wiki/Zero_divisor 9f49f590-90a1-4cca-9da0-d5bf922c2d3f->//en.wikipedia.org/wiki/Zero_divisor //en.wikipedia.org/wiki/Unit_quaternion https://en.wikipedia.org/wiki/Unit_quaternion 9f49f590-90a1-4cca-9da0-d5bf922c2d3f->//en.wikipedia.org/wiki/Unit_quaternion //en.wikipedia.org/wiki/Group_(mathematics) https://en.wikipedia.org/wiki/Group_(mathematics) 9f49f590-90a1-4cca-9da0-d5bf922c2d3f->//en.wikipedia.org/wiki/Group_(mathematics) //en.wikipedia.org/wiki/3-sphere https://en.wikipedia.org/wiki/3-sphere 9f49f590-90a1-4cca-9da0-d5bf922c2d3f->//en.wikipedia.org/wiki/3-sphere //en.wikipedia.org/wiki/Spin(3) https://en.wikipedia.org/wiki/Spin(3) 9f49f590-90a1-4cca-9da0-d5bf922c2d3f->//en.wikipedia.org/wiki/Spin(3) //en.wikipedia.org/wiki/SU(2) https://en.wikipedia.org/wiki/SU(2) 9f49f590-90a1-4cca-9da0-d5bf922c2d3f->//en.wikipedia.org/wiki/SU(2) //en.wikipedia.org/wiki/Universal_cover https://en.wikipedia.org/wiki/Universal_cover 9f49f590-90a1-4cca-9da0-d5bf922c2d3f->//en.wikipedia.org/wiki/Universal_cover //en.wikipedia.org/wiki/SO(3) https://en.wikipedia.org/wiki/SO(3) 9f49f590-90a1-4cca-9da0-d5bf922c2d3f->//en.wikipedia.org/wiki/SO(3) //en.wikipedia.org/wiki/Quaternion_group https://en.wikipedia.org/wiki/Quaternion_group 9f49f590-90a1-4cca-9da0-d5bf922c2d3f->//en.wikipedia.org/wiki/Quaternion_group //en.wikipedia.org/wiki/Hurwitz's_theorem_(composition_algebras) https://en.wikipedia.org/wiki/Hurwitz's_theorem_(composition_algebras) 2a07e4ea-610b-4c9a-bb84-d961fb2450e5 Code and Coffee Book Club 2a07e4ea-610b-4c9a-bb84-d961fb2450e5->9f49f590-90a1-4cca-9da0-d5bf922c2d3f