(en.wikipedia.org) Scott–Curry theorem - Wikipedia

ROAM_REFS: https://en.wikipedia.org/wiki/Scott–Curry_theorem

In mathematical logic, the Scott–Curry theorem is a result in lambda calculus stating that if two non-empty sets of lambda terms A and B are closed under beta-convertibility then they are recursively inseparable.

** Explanation

A set A of lambda terms is closed under beta-convertibility if for any lambda terms X and Y, if \(X \in A\) and X is β-equivalent to Y then \(Y \in A\). Two sets A and B of natural numbers are recursively separable if there exists a computable function \(f:\mathbb{N}\rightarrow\{ 0,1\}\) such that \(f(a) = 0\) if \(a \in A\) and \(f(b) = 1\) if \(b \in B\). Two sets of lambda terms are recursively separable if their corresponding sets under a Gödel numbering are recursively separable, and recursively inseparable otherwise.

The Scott–Curry theorem applies equally to sets of terms in combinatory logic with weak equality. It has parallels to Rice's theorem in computability theorem, which states that all non-trivial semantic properties of programs are undecidable.

The theorem has the immediate consequence that it is an undecidable problem to determine if two lambda terms are β-equivalent.

Local Graph

org-roam 269a61e7-1e3a-42f2-9749-cf15a6b20c3a (en.wikipedia.org) Scott–Curry theore... //en.wikipedia.org/wiki/Mathematical_logic https://en.wikipedia.org/wiki/Mathematical_logic 269a61e7-1e3a-42f2-9749-cf15a6b20c3a->//en.wikipedia.org/wiki/Mathematical_logic //en.wikipedia.org/wiki/Lambda_calculus https://en.wikipedia.org/wiki/Lambda_calculus 269a61e7-1e3a-42f2-9749-cf15a6b20c3a->//en.wikipedia.org/wiki/Lambda_calculus //en.wikipedia.org/wiki/Recursively_inseparable https://en.wikipedia.org/wiki/Recursively_inseparable 269a61e7-1e3a-42f2-9749-cf15a6b20c3a->//en.wikipedia.org/wiki/Recursively_inseparable //en.wikipedia.org/wiki/Lambda_calculus#Reduction https://en.wikipedia.org/wiki/Lambda_calculus#Reduction 269a61e7-1e3a-42f2-9749-cf15a6b20c3a->//en.wikipedia.org/wiki/Lambda_calculus#Reduction //en.wikipedia.org/wiki/Computable_function https://en.wikipedia.org/wiki/Computable_function 269a61e7-1e3a-42f2-9749-cf15a6b20c3a->//en.wikipedia.org/wiki/Computable_function //en.wikipedia.org/wiki/Gödel_numbering https://en.wikipedia.org/wiki/Gödel_numbering 269a61e7-1e3a-42f2-9749-cf15a6b20c3a->//en.wikipedia.org/wiki/Gödel_numbering //en.wikipedia.org/wiki/Combinatory_logic https://en.wikipedia.org/wiki/Combinatory_logic 269a61e7-1e3a-42f2-9749-cf15a6b20c3a->//en.wikipedia.org/wiki/Combinatory_logic //en.wikipedia.org/wiki/Rice's_theorem //en.wikipedia.org/wiki/Rice's_theorem 269a61e7-1e3a-42f2-9749-cf15a6b20c3a->//en.wikipedia.org/wiki/Rice's_theorem //en.wikipedia.org/wiki/Undecidable_problem https://en.wikipedia.org/wiki/Undecidable_problem 269a61e7-1e3a-42f2-9749-cf15a6b20c3a->//en.wikipedia.org/wiki/Undecidable_problem //en.wikipedia.org/wiki/Rice's_theorem https://en.wikipedia.org/wiki/Rice's_theorem 2a07e4ea-610b-4c9a-bb84-d961fb2450e5 Code and Coffee Book Club 2a07e4ea-610b-4c9a-bb84-d961fb2450e5->269a61e7-1e3a-42f2-9749-cf15a6b20c3a